Add like
Add dislike
Add to saved papers

Impact of ionization equilibrium on electrokinetic flow of weak electrolytes in nanochannels.

Nanotechnology 2018 July 21
Weak electrolyte transport in nanochannels or nanopores has been actively explored in recent experiments. In this paper, we establish a new electrokinetic model where the ionization balance effect of weak electrolytes is outlined, and performed numerical calculations for H3 PO4 concentration-biased nanochannel systems. By considering the roles of local chemical equilibrium in phosphorous acid ionization, the simulation results show quantitative agreement with experimental observations. Based on the model, we predict that enhanced energy harvesting capacity could be accomplished by utilizing weak electrolytes compared to the conventional strong electrolyte approaches in a concentration gradient-based power-generating system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app