Add like
Add dislike
Add to saved papers

Ultra-high-b radial diffusion-weighted imaging (UHb-rDWI) of human cervical spinal cord.

BACKGROUND: Injury in the cervical spinal cord (CSC) can lead to varying degrees of neurologic deficit and persistent disability. Diffusion tensor imaging (DTI) is a promising method to evaluate white matter integrity and pathology. However, the conventional DTI results are limited with respect to the specific details of neuropathology and microstructural architecture. In this study we used ultrahigh-b radial-DWI (UHb-rDWI) with b-values ranging from 0 to ∼7500 s/mm2 and calculated decay constant (DH ) at the high b-values, which gives much deeper insight about the microscopic environment of CSC white matter.

PURPOSE: To evaluate a novel diffusion MRI, UHb-rDWI technique for imaging of the CSC.

STUDY TYPE: Longitudinal.

SUBJECTS: Four healthy controls, each scanned twice.

FIELD STRENGTH/SEQUENCE: 3T/2D single shot diffusion-weighted stimulated echo planar imaging with reduced field of view.

ASSESSMENT: The signal from each pixel of b0 (b = 0) and b-value (b ≠ 0) images were fitted to a biexponential function and normalized. The signal-b curve is obtained by dividing the latter curve by the former. DH was obtained from the curve at b >4000 s/mm2 . A Monte-Carlo Simulation (MCS) was performed to investigate how DH changes upon the increased water-exchange at the CSC.

RESULTS: The signal-b curves plotted at multiple levels of healthy CSC are almost identical on two successive scans and show a biexponential decay behavior: fast exponential decay at lower b-values and much slower decay at UHb-values. The mean values of DH were measured as (0.0607 ± 0.02531) ×10-3 and (0.0357 ± 0.02072) ×10-3 s/mm2 at the lateral funiculus and posterior column, respectively. MCS of diffusion MRI shows that the DH is elevated by increased water exchange between the intra- and extraaxonal spaces.

DATA CONCLUSION: UHb-rDWI signal-b plots of the normal CSC were highly reproducible on successive scans and their biexponential decay behavior can be used to characterize normal spinal white matter.

LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app