Add like
Add dislike
Add to saved papers

Theoretical insights on the inhibition mechanism of a class A Serine Hydrolase by avibactam.

The inhibition mechanism of CTX-M-15 class A serine hydrolase by the inhibitor avibactam is addressed by a combined molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) approach postulating that the residue Ser70 is the sole reacting residue, that is, itself may play the role of the acid-base species required for the enzyme inhibition. Other residues located in the active site have key participation in the positioning of the inhibitor in the right conformation to favor the attack of Ser70, in addition to the stabilization of the transition state by electrostatic interactions with avibactam. The results validate the hypothesis and show that the reaction follows an asynchronous concerted mechanism, in which the nucleophilic attack of the hydroxyl oxygen of Ser70 precedes the protonation of the amidic nitrogen and ring opening. The calculated activation barrier is 16 kcal/mol in agreement with the experimental evidence. © 2018 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app