Add like
Add dislike
Add to saved papers

Structural characterization and in vivo pro-tumor properties of a highly conserved matrikine.

Oncotarget 2018 April 4
Elastin-derived peptides (EDPs) exert protumor activities by increasing tumor growth, migration and invasion. A number of studies have highlighted the potential of VGVAPG consensus sequence-derived elastin-like polypeptides whose physicochemical properties and biocompatibility are particularly suitable for in vivo applications, such as drug delivery and tissue engineering. However, among the EDPs, the influence of elastin-derived nonapeptides (xGxPGxGxG consensus sequence) remains unknown. Here, we show that the AGVPGLGVG elastin peptide (AG-9) present in domain-26 of tropoelastin is more conserved than the VGVAPG elastin peptide (VG-6) from domain-24 in mammals. The results demonstrate that the structural features of AG-9 and VG-6 peptides are similar. CD, NMR and FTIR spectroscopies show that AG-9 and VG-6 present the same conformation, which includes a mixture of random coils and β-turn structures. On the other hand, the supraorganization differs between peptides, as demonstrated by AFM. The VG-6 peptide gathers in spots, whereas the AG-9 peptide aggregates into short amyloid-like fibrils. An in vivo study showed that AG-9 peptides promote tumor progression to a greater extent than do VG-6 peptides. These results were confirmed by in vitro studies such as 2D and 3D proliferation assays, migration assays, adhesion assays, proteinase secretion studies and pseudotube formation assays to investigate angiogenesis. Our findings suggest the possibility that the AG-9 peptide present in patient sera may dramatically influence cancer progression and could be used in the design of new, innovative antitumor therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app