Add like
Add dislike
Add to saved papers

On Synchronizing Coupled Retinogeniculocortical Pathways: A Toy Model.

A Newman-Watts graph is formed by including random links in a regular lattice. Here, the emergence of synchronization in coupled Newman-Watts graphs is studied. The whole neural network is considered as a toy model of mammalian visual pathways. It is composed by four coupled graphs, in which a coupled pair represents the lateral geniculate nucleus and the visual cortex of a cerebral hemisphere. The hemispheres communicate with each other through a coupling between the graphs representing the visual cortices. This coupling makes the role of the corpus callosum. The state transition of neurons, supposed to be the nodes of the graphs, occurs in discrete time and it follows a set of deterministic rules. From periodic stimuli coming from the retina, the neuronal activity of the whole network is numerically computed. The goal is to find out how the values of the parameters related to the network topology affect the synchronization among the four graphs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app