Add like
Add dislike
Add to saved papers

Childhood lead biokinetics and associations with age among a group of lead-poisoned children in China.

Childhood lead exposure has been shown to have a significant effect on neurodevelopment. Many of the biokinetics involved with lead biomarkers in children still remain unknown. Two hundred fifty (157 in the exposed group and 93 controls) children were enrolled in our study and lead exposed children returned for multiple visits for measurement of blood and bone lead and chelation treatment. We demonstrated that the correlation between blood and bone lead increased with subsequent visits. We calculated the blood lead half-life for 50 patients, and found a significant (p-value < 0.001) positive correlation with age. For ages 1-3 years (N = 17), the blood lead half-life was found to be 6.9 ± 4.0 days and for 3+ years it was found to be (N = 33) 19.3 ± 14.1 days. In conclusion, the turnover of lead in children is faster than in adults. Our results indicate that blood lead is a more acute biomarker of exposure than previously thought, which will impact studies of children's health using blood lead as a biomarker.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app