Add like
Add dislike
Add to saved papers

The dual delivery of KGF and bFGF by collagen membrane to promote skin wound healing.

The major challenges associated with skin regeneration can include hindered vascularization and an insufficient degree of epithelization. In view of the complexity of these processes and the control signals on which they depend, one possible solution to these limitations could be simulating normal skin development and wound repair via the exogenous delivery of multiple cytokines. Here, we report the use of keratinocyte growth factor (KGF or FGF-7) and basic fibroblast growth factor (bFGF or FGF-2) released chemically modified collagen membranes to facilitate skin wound healing. The results from in vitro studies confirmed that this system resulted in higher cellular proliferation and faster cell migration. After transplanting the biomaterial onto an excisional wound healing model, the dual growth factor group, compared with the single growth factor groups and empty control group, showed more highly developed vascular networks and organized epidermal regeneration in the wounds. As a consequence, this experimental group showed mature epidermal coverage. Overall, this novel approach of releasing growth factors from a collagen membrane opens new avenues for fulfilling unmet clinical needs for wound care.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app