JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modulation by orexin A of spontaneous excitatory and inhibitory transmission in adult rat spinal substantia gelatinosa neurons.

Hypothalamic neuropeptides, orexins A and B, differently inhibit nociceptive behavior. This difference is possibly due to a distinction between orexins A and B in modulating synaptic transmission in spinal substantia gelatinosa (SG) neurons that play a pivotal role in regulating nociceptive transmission. Although we previously reported a modulatory action of orexin B on synaptic transmission in adult rat SG neurons, it has not been fully examined how the transmission is affected by orexin A. The present study examined the effects of orexin A on spontaneous excitatory and inhibitory transmission in SG neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. Like orexin B, orexin A produced an inward current at -70 mV and/or increased the frequency of spontaneous excitatory postsynaptic current without changing its amplitude. Half-maximal effective concentration values for their effects were 0.0045 and 0.030 μM, respectively; the former value was four-fold smaller than that of orexin B while the latter value was comparable to that of orexin B. Orexin A enhanced not only glycinergic but also GABAergic transmission, although only glycinergic transmission was facilitated by orexin B in the majority of neurons tested. Orexin A activities were inhibited by an orexin-1 receptor antagonist (SB334867) but not an orexin-2 receptor antagonist (JNJ10397049), as different from orexin B whose activation was depressed by JNJ10397049 but not SB334867. These results indicate that orexin A has a different action from orexin B in SG neurons in efficacy for inward current production and in GABAergic transmission enhancement, possibly owing to orexin-1 but not orexin-2 receptor activation. This difference could contribute to at least a part of the distinction between orexins A and B in antinociceptive effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app