Add like
Add dislike
Add to saved papers

Proteome profiling of exosomes derived from plasma of heifers with divergent genetic merit for fertility.

The current study evaluated exosomes isolated from plasma of heifers bred to have high or low fertility through developing extreme diversity in fertility breeding values, however, key animal traits (e.g., body weight, milk production, and percentage of North American genetics) remained similar between the 2 groups. The exosomes were isolated by a combined ultracentrifugation and size exclusion chromatography approach and characterized by their size distribution (nanoparticle tracking analysis), morphology (transmission electron microscopy), and presence of exosomal markers (immunoblotting). In addition, a targeted mass spectrometry approach was used to confirm the presence of 2 exosomal markers, tumor susceptibility gene 101 and flotillin 1. The number of exosomes from plasma of high fertility heifers was greater compared with low fertility heifers. Interestingly, the exosomal proteomic profile, evaluated using mass spectrometry, identified 89 and 116 proteins in the high and low fertility heifers respectively, of which 4 and 31 were unique, respectively. These include proteins associated with specific biological processes and molecular functions of fertility. Most notably, the tetratricopeptide repeat protein 41-related, glycodelin, and kelch-like protein 8 were identified in plasma exosomes unique to the low fertility heifers. These proteins are suggested to play a role in reproduction; however, the role of these proteins in dairy cow reproduction remains to be elucidated. Their identification underscores the potential for proteins within exosomes to provide information on the fertility status and physiological condition of the cow. This may potentially lead to the development of prognostic tools and interventions to improving dairy cow fertility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app