Add like
Add dislike
Add to saved papers

Endogenous acetylcholine regulates neuronal and astrocytic vascular endothelial growth factor expression levels via different acetylcholine receptor mechanisms.

Vascular endothelial growth factor (VEGF), a signaling molecule involved in angiogenesis, plays an important role in neuroprotection and neurogenesis. In the present study, we aimed to elucidate the mechanisms underlying endogenous acetylcholine (ACh)-induced VEGF expression in neurons and astrocytes, and identify the neuronal cells contributing to its expression in the medial septal area, a nuclear origin of cholinergic neurons mainly projecting to the hippocampus. The mRNA expression and secretion of VEGF were measured by RT-PCR and ELISA using mouse primary cultured cortical neurons and astrocytes. VEGF expression in the medial septal area was assessed by RT-PCR and immunostaining using mice treated with tacrine [9-amino-1,2,3,4-tetrahydro-acridine HCl (THA); 2.5 mg/kg, i.p.] once daily for 7 days. The THA treatment increased VEGF mRNA expression in neurons in a manner that was reversed by mecamylamine, a nicotinic ACh receptor (AChR) antagonist, whereas in mouse primary cultured astrocytes, carbachol, but not THA dose-dependently increased VEGF mRNA expression and secretion in a manner that was inhibited by scopolamine, a muscarinic AChR inhibitor. In in vivo studies, the administration of THA significantly increased the expression of VEGF in medial septal cholinergic neurons and the effects of THA were significantly blocked by mecamylamine. THA also significantly increased the expression levels of a phosphorylated form of VEGF receptor 2 (p-VEGFR2), an activated form of VEGFR2. The present results suggest that endogenous ACh plays an up-regulatory role for VEGF expression in neurons and astrocytes via different mechanisms. Moreover, endogenous ACh-induced increases in VEGF levels appear to activate VEGFR2 on medial septal cholinergic neurons via an autocrine mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app