Add like
Add dislike
Add to saved papers

Acute Tetrahydrobiopterin Improves Endothelial Function in Patients With COPD.

Chest 2018 September
BACKGROUND: Cardiovascular diseases represent a hallmark characteristic in COPD, and endothelial dysfunction has been observed in these patients. Tetrahydrobiopterin (BH4 ) is an essential cofactor for nitric oxide (NO) synthesis and a regulator of endothelial function. The goal of this study was to test the hypothesis that a single dose of BH4 would improve endothelial function in patients with COPD via an increase in NO bioavailability.

METHODS: Seventeen patients with COPD completed a randomized, double-blind, placebo (PLC)-controlled, crossover trial with an acute dose of either BH4 (Kuvan; BioMarin Pharmaceutical Inc) or PLC. Flow-mediated dilation (FMD), a bioassay of endothelial function, was completed prior to and 3 h following each treatment. Phospho- and total endothelial NO synthase (NOS3) protein was evaluated after incubating endothelial cells with plasma from the patients prior to and following treatment. Fifteen demographically matched control subjects were tested at baseline for case control comparisons.

RESULTS: Treatment with BH4 significantly (P ≤ .004) increased FMD, improving endothelial function in patients compared to control values (P ≥ .327). BH4 increased (P = .013) the ratio of phospho-NOS3 to total NOS3 protein. No changes in FMD (P ≥ .776) or the protein ratio (P = .536) were observed following PLC.

CONCLUSIONS: An acute dose of BH4 was able to improve endothelial function in patients with COPD to values similar to control subjects. The improvement in endothelial function was accompanied by an increase in NOS3 phosphorylation. BH4 may represent a potential novel therapy to improve endothelial function and reduce cardiovascular disease risk in patients with COPD.

TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01398943; URL: www.clinicaltrials.gov.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app