Add like
Add dislike
Add to saved papers

Opposing roles of Y-family DNA polymerases in lipid peroxide mutagenesis at the hisG46 target in the Ames test.

DNA polymerases play a key role in mutagenesis by performing translesion DNA synthesis (TLS). The Y-family of DNA polymerases comprises several evolutionarily conserved families, specializing in TLS of different DNA adducts. Exocyclic etheno and propano DNA adducts are among the most common endogenous DNA lesions induced by lipid peroxidation reactions triggered by oxidative stress. We have investigated the participation of two enterobacterial representatives of the PolIV and PolV branches of Y-family DNA polymerases in mutagenesis by two model lipid peroxidation derived genotoxins, glyoxal and crotonaldehyde. Mutagenesis by the ethano adduct (glyoxal-derived) and the propano adduct (crontonaldehyde-derived) at the GC target in the Ames test depended exclusively on PolV type DNA polymerases such as PolRI. In contrast, PolIV suppressed glyoxal and, even more, crotonaldehyde mutagenesis, as detected by enzyme overexpression and gene knockout approaches. We propose that DNA polymerase IV, which is the mammalian DNA polymerase κ ortholog, acts as a housekeeper protecting the genome from lipoxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app