Add like
Add dislike
Add to saved papers

Administration of activated lymphocyte-derived DNA accelerates and aggravates lupus nephritis in B6/lpr mice: a new approach to modify a lupus murine model.

B6/lpr mouse strain is a well-known systemic lupus erythematosus murine model characterized by uncontrolled lymphoproliferation and autoantibody production. However, it displays a delayed and mild development of lupus nephritis (LN), which is not conducive to the research of the pathogenesis and therapeutic strategies of this condition. Our previous study demonstrated that activated lymphocyte-derived DNA (ALD-DNA) could induce high urine protein levels and severe glomerulonephritis (GN) in BALB/c mice. In the present study, we tried to remedy delayed urine protein production and mild GN in B6/lpr mice via ALD-DNA immunization. We found that urine protein levels were enhanced significantly in B6/lpr mice 4 weeks after ALD-DNA immunization compared with those in unactivated lymphocyte-derived (UnALD)-DNA- and phosphate-buffered saline (PBS)-treated controls. Moreover, more serious GN and glomerular immune complex were observed in ALD-DNA-immunized B6/lpr mice. We further explored the mechanism, and found that ALD-DNA immunization promoted T helper type 17 (Th17) cell enrichment remarkably, which enhanced the proportion of autoantibody-secreting plasma cells and promoted the production of anti-dsDNA autoantibodies, leading to accelerated and aggravated LN. Our data demonstrated that ALD-DNA immunization could remedy delayed urine protein production and mild GN in B6/lpr mouse, which makes it more suitable for studies on the pathogenesis of and therapeutic strategies against LN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app