COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification.

Nucleic acid extraction and purification represents a major bottleneck in DNA analysis. Traditional methods for DNA purification often require reagents that may inhibit quantitative polymerase chain reaction (qPCR) if not sufficiently removed from the sample. Approaches that employ magnetic beads may exhibit lower extraction efficiencies due to sedimentation and aggregation. In this study, four hydrophobic magnetic ionic liquids (MILs) were investigated as DNA extraction solvents with the goal of improving DNA enrichment factors and compatibility with downstream bioanalytical techniques. By designing custom qPCR buffers, we directly incorporated DNA-enriched MILs including trihexyl(tetradecyl)phosphonium tris(hexafluoroacetylaceto)nickelate(II) ([P6,6,6,14 + ][Ni(hfacac)3 - ]), [P6,6,6,14 + ] tris(hexafluoroacetylaceto)colbaltate(II) ([Co(hfacac)3 - ]), [P6,6,6,14 + ] tris(hexafluoroacetylaceto)manganate(II) ([Mn(hfacac)3 - ]), or [P6,6,6,14 + ] tetrakis(hexafluoroacetylaceto)dysprosate(III) ([Dy(hfacac)4 - ]) into reaction systems, thereby circumventing the need for time-consuming DNA recovery steps. Incorporating MILs into the reaction buffer did not significantly impact the amplification efficiency of the reaction (91.1%). High enrichment factors were achieved using the [P6,6,6,14 + ][Ni(hfacac)3 - ] MIL for the extraction of single-stranded and double-stranded DNA with extraction times as short as 2 min. When compared to a commercial magnetic bead-based platform, the [P6,6,6,14 + ][Ni(hfacac)3 - ] MIL was capable of producing higher enrichment factors for single-stranded DNA and similar enrichment factors for double-stranded DNA. The MIL-based method was applied for the extraction and direct qPCR amplification of mutation prone-KRAS oncogene fragment in plasma samples. Graphical abstract Magnetic ionic liquid solvents are shown to preconcentrate sufficient KRAS DNA template from an aqueous solution in as short as 2 min without using chaotropic salts or toxic organic solvents. By using custom-designed qPCR buffers, DNA can be directly amplified and quantified from four MILs examined in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app