Add like
Add dislike
Add to saved papers

Feasibility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Low-Dose Gadolinium: Comparative Performance With Standard Dose in Prostate Cancer Diagnosis.

OBJECTIVES: This study investigates whether administration of low doses of gadolinium-based contrast agent (GBCA) for dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) can be as effective as a standard dose in distinguishing prostate cancer (PCa) from benign tissue. In addition, we evaluated the combination of kinetic parameters from the low- and high-dose injection as a new diagnostic marker.

MATERIALS AND METHODS: Patients (n = 17) with histologically confirmed PCa underwent preoperative 3 T MRI. Dynamic contrast-enhanced MRI images were acquired at 8.3-second temporal resolution with a low dose (0.015 mmol/kg) and close to the standard dose (0.085 mmol/kg) of gadobentate dimeglumine bolus injections. Low-dose images were acquired for 3.5 minutes, followed by a 5-minute gap before acquiring standard dose images for 8.3 minutes. The data were analyzed qualitatively to investigate whether lesions could be detected based on early focal enhancement and quantitatively by fitting signal intensity as a function of time with an empirical mathematical model to obtain a maximum enhancement projection (MEP) and signal enhancement rate (α).

RESULTS: Both low- and standard-dose DCE-MRI showed similar sensitivity (13/26 = 50%) and lesion conspicuity score (4.0 ± 1.0 vs 4.2 ± 0.9; P = 0.317) for PCa diagnosis on qualitative analysis. Prostate cancer showed significantly increased α compared with benign tissue for low (9.98 ± 5.84 vs 5.12 ± 2.95 s) but not for standard (4.27 ± 2.20 vs 3.35 ± 1.48 s) dose. The ratio of low-dose α to standard-dose α was significantly greater (P = 0.02) for PCa (2.8 ± 2.3) than for normal prostate (1.6 ± 0.9), suggesting changes in water exchange and T2* effects associated with cancer. In addition, decreases in the percentage change in T1 relaxation rate as a function of increasing contrast media concentration (ie, the "saturation effect") can also contribute to the observed differences in high-dose and low-dose α. Area under the receiver operating characteristic curve for differentiating PCa from benign tissue using α was higher for low dose (0.769) compared with standard dose (0.625). There were no significant differences between MEP calculated for PCa and normal tissue at the low and standard doses. Moderate significant Pearson correlation for DCE parameters, MEP (r = 0.53) and α (r = 0.58), was found between low and standard doses of GBCA.

CONCLUSIONS: These preliminary results suggest that DCE-MRI with a low GBCA dose distinguishes PCa from benign prostate tissue more effectively than does the standard GBCA dose, based on signal enhancement rate. Diagnostic accuracy is similar on qualitative assessment. Prostate cancer diagnosis may be feasible with DCE-MRI with low-dose GBCA. In addition, comparison of enhancement kinetics after low and high doses of contrast media may provide diagnostically useful information.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app