Add like
Add dislike
Add to saved papers

Cellulose degradation potential of Paenibacillus lautus strain BHU3 and its whole genome sequence.

The aim of this work was to study cellulose degradation and whole genome sequence of Paenibacillus lautus BHU3 isolate. The 16S rRNA gene sequence analysis revealed genetic relatedness (99%) of Iso 7 with Paenibacillus lautus, Iso 8 with Paenibacillus lactis, and Iso 9 with Bacillus amyloliquefaciens. Clear zone formation followed by CMCase and FPase assays exhibited cellulolytic potential in the order: P. lautus > P. lactis > B. amyloliquefaciens. The most potent isolate, Paenibacillus lautus strain BHU3 was subjected to whole genome analysis with reference to the genomic basis of cellulose degradation. Results showed that P. lautus strain BHU3 contains 6234 protein coding genes of which, 316 were associated with the carbohydrate metabolism. Further, genomic CAZymes analysis indicated that the P. lautus strain BHU3 comprising a range of glycoside hydrolase (GH) family genes (143), may play the vital role(s) in enhancing the cellulolytic attributes, and could be the useful tool for lignocellulosic biomass degradation and waste management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app