Add like
Add dislike
Add to saved papers

Neuronal Calcium Recording with an Engineered TEV Protease.

Technologies for measuring the transient Ca2+ spikes that accompany neural signaling have revolutionized our understanding of the brain. Nevertheless, microscopic visualization of Ca2+ spikes on the time scale of neural activity across large brain regions or in thick specimens remains a significant challenge. The recent development of stable integrators of Ca2+ , instead of transient reporters, provides an avenue to investigate neural signaling in otherwise challenging systems. Here, we describe an engineered Ca2+ -sensing enzyme consisting of a split Tobacco Etch Virus (TEV) protease with each half tethered to a calmodulin or M13 Ca2+ binding domain. This Split TEV, Ca2+ Activated Neuron Recorder (SCANR) remains separate and catalytically incompetent until a spike in cellular Ca2+ triggers its reconstitution and the subsequent turnover of a caged, genetically encoded reporter substrate. We report the identification of a successful Ca2+ -sensing split TEV from a library of chimeras and deployment of the enzyme in primary rat hippocampal neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app