Add like
Add dislike
Add to saved papers

On task: Considerations and future directions for studies of corticospinal excitability in exercise neuroscience and related disciplines.

Over the last few decades, transcranial magnetic stimulation (TMS) has emerged as a conventional laboratory technique in human neurophysiological research. Exercise neuroscientists have used TMS to study central nervous system contributions to fatigue, training, and performance in health, injury, and disease. In such studies, corticospinal excitability is often assessed at rest or during simple isometric tasks with the implication that the results may be extrapolated to more functional and complex movement outside of the laboratory. However, the neural mechanisms that influence corticospinal excitability are both state- and task-dependent. Furthermore, there are many sites of modulation along the pathway from the motor cortex to the muscle; a fact that is somewhat obscured by the all-encompassing and poorly defined term "corticospinal excitability". Therefore, the tasks we use to assess corticospinal excitability and the conclusions that we draw from such a global measure of the motor pathway must be taken into consideration. The overall objective of this review is to highlight the task-dependent nature of corticospinal excitability and the tools used to assess modulation at cortical and spinal sites of modulation. By weighing the advantages and constraints of conventional approaches to studying corticospinal excitability, and considering some new and novel approaches, we will continue to advance our understanding of the neural control of movement during exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app