Add like
Add dislike
Add to saved papers

MicroRNA-mediated interacting circuits predict hypoxia and inhibited osteogenesis of stem cells, and dysregulated angiogenesis are involved in osteonecrosis of the femoral head.

PURPOSE: MicroRNAs (miRNAs) are associated with various pathologic conditions and can serve as diagnostic or therapeutic biomarkers. This study tried to identify the differentially expressed miRNAs to predict the possible pathomechanisms involved in osteonecrosis of the femoral head (ONFH).

METHODS: We compared the peripheral blood miRNAs in 46 patients with ONFH and 85 healthy controls by microarray and droplet digital polymerase chain reaction (ddPCR). Putative interacted networks between the differentially responded miRNAs were analyzed by web-based bioinformatics prediction tools.

RESULTS: Microarray identified 51 differentially expressed miRNAs with at least twofold change (upregulation in 34 and downregulation in 17), and the results were validated by ddPCR using six selected miRNAs. Bioinformatics genetic network analysis focusing on the six miRNAs found the upregulated miR-18a and miR-19a are associated with angiogenesis after induction of ischemia; the upregulated miR-138-1 can inhibit osteogenic differentiation of mesenchymal stem cells; the most targeted genes, p53 and SERBP1, are associated with hypoxia and hypofibrinolysis.

CONCLUSIONS: This study combined the miRNA analysis with the bioinformatics and predicts that hypoxia, inhibited osteogenesis of stem cells, and dysregulated angiogenesis might be orchestrated through the miRNA interacting circuits in the pathogenesis of ONFH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app