Add like
Add dislike
Add to saved papers

A high-content screen for small-molecule regulators of epithelial cell-adhesion molecule (EpCAM) cleavage yields a robust inhibitor.

Epithelial cell-adhesion molecule (EpCAM) is a transmembrane protein that regulates cell cycle progression and differentiation and is overexpressed in many carcinomas. The EpCAM-induced mitogenic cascade is activated via regulated intramembrane proteolysis (RIP) of EpCAM by ADAM and γ-secretases, generating the signaling-active intracellular domain EpICD. Because of its expression pattern and molecular function, EpCAM is a valuable target in prognostic and therapeutic approaches for various carcinomas. So far, several immunotherapeutic strategies have targeted the extracellular domain of EpCAM. However, targeting the intracellular signaling cascade of EpCAM holds promise for specifically interfering with EpCAM's proliferation-stimulating signaling cascade. Here, using a yellow fluorescence protein-tagged version of the C-terminal fragment of EpCAM, we established a high-content screening (HCS) of a small-molecule compound library ( n = 27,280) and characterized validated hits that target EpCAM signaling. In total, 128 potential inhibitors were initially identified, of which one compound with robust inhibitory effects on RIP of EpCAM was analyzed in greater detail. In summary, our study demonstrates that the development of an HCS for small-molecule inhibitors of the EpCAM signaling pathway is feasible. We propose that this approach may also be useful for identifying chemical compounds targeting other disorders involving membrane cleavage-dependent signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app