Add like
Add dislike
Add to saved papers

Dosimetric effects of bolus and lens shielding in treating ocular lymphomas with low-energy electrons.

Radiation therapy is an effective treatment for primary orbital lymphomas. Lens shielding with electrons can reduce the risk of high-grade cataracts in patients undergoing treatment for superficial tumors. This work evaluates the dosimetric effects of a suspended eye shield, placement of bolus, and varying electron energies. Film (GafChromic EBT3) dosimetry and relative output factors were measured for 6, 8, and 10 MeV electron energies. A customized 5-cm diameter circle electron orbital cutout was constructed for a 6 × 6-cm applicator with a suspended lens shield (8-mm diameter Cerrobend cylinder, 2.2-cm length). Point doses were measured using a scanning electron diode in a solid water phantom at depths representative of the anterior and posterior lens. Depth dose profiles were compared for 0-mm, 3-mm, and 5-mm bolus thicknesses. At 5 mm (the approximate distance of the anterior lens from the surface of the cornea), the percent depth dose under the suspended lens shield was reduced to 15%, 15%, and 14% for electron energies 6, 8, and 10 MeV, respectively. Applying bolus reduced the benefit of lens shielding by increasing the estimated doses under the block to 27% for 3-mm and 44% for 5-mm bolus for a 6 MeV incident electron beam. This effect is minimized with 8 MeV electron beams where the corresponding values were 15.5% and 18% for 3-mm and 5-mm bolus. Introduction of a 7-mm hole in 5-mm bolus to stabilize eye motion during treatment altered lens doses by about 1%. Careful selection of electron energy and consideration of bolus effects are needed to account for electron scatter under a lens shield.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app