Add like
Add dislike
Add to saved papers

Lithium Improves Dopamine Neurotransmission and Increases Dopaminergic Protein Abundance in the Striatum after Traumatic Brain Injury.

Journal of Neurotrauma 2018 December 2
Experimental models of traumatic brain injury (TBI) recapitulate secondary injury sequela and cognitive dysfunction reported in patients afflicted with a TBI. Impairments in neurotransmission are reported in multiple brain regions in the weeks following experimental TBI and may contribute to behavioral dysfunction. Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is an important mechanism for neurotransmitter exocytosis. We previously showed that lithium treatment attenuated hippocampal decreases in α-synuclein and VAMP2, enhanced SNARE complex formation, and improved cognitive performance after TBI. However, the effect of TBI on striatal SNARE complex formation is not known. We hypothesized lithium treatment would attenuate TBI-induced impairments in evoked dopamine release and increase the abundance of synaptic proteins associated with dopamine neurotransmission. The current study evaluated the effect of lithium (1 mmol/kg/day) administration on striatal evoked dopamine neurotransmission, SNARE complex formation, and proposed actions of lithium, including inhibition of GSK3β, assessment of synaptic marker protein abundance, and synaptic proteins important for dopamine synthesis and transport following controlled cortical impact (CCI). Sprague-Dawley rats were subjected to CCI or sham injury and treated daily with lithium chloride or vehicle for 7 days post-injury. We provide novel evidence that CCI reduces SNARE protein and SNARE complex abundance in the striatum at 1 week post-injury. Lithium administration improved evoked dopamine release and increased the abundance of α-synuclein, D2 receptor, and phosphorylated tyrosine hydroxylase in striatal synaptosomes post-injury. These findings show that lithium treatment attenuated dopamine neurotransmission deficits and increased the abundance of synaptic proteins important for dopamine signaling after TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app