Add like
Add dislike
Add to saved papers

Tomato plants ectopically expressing Arabidopsis GRF9 show enhanced resistance to phosphate deficiency and improved fruit production in the field.

Agronomic performance of transgenic tomato overexpressing functional genes has rarely been investigated in the field. In an attempt to improve low-phosphate (P) stress tolerance of tomato (Solanum lycopersicum) plants and promote tomato fruit production in the field, an expression vector containing cDNA to an Arabidopsis 14-3-3 protein, General Regulatory Factor 9 (GRF9), driven by a cauliflower mosaic virus 35S promoter, was transferred into tomato plants. Transgenic expression of GRF9 was ascertained by quantitative real-time PCR analysis. The degree of low-P tolerance in transgenic plants was found to be significantly greater than that in wild-type plants, and reflected in improved root development and enhanced P content under hydroponic conditions. For transgenic tomato, roots had higher P uptake, as evidenced by tissue P content and relative expression of the genes LePT1 and LePT2 in both normal and low-P hydroponic solutions. GRF9 overexpressors had greatly enhanced proton extrusion from roots and heightened activity of the plasma-membrane H+ -ATPase (PM H+ -ATPase) in roots under low-P hydroponic conditions. Thus, in addition to enhanced root development, higher expression of genes coding for phosphate transporters and improved capacity for acidification in the rhizosphere emerged as key mechanisms underpinning improved P acquisition in transgenic tomato plants in soil. Subsequent field trials measuring tomato fruit production at two P levels, indicated that GRF9 can indeed improve total tomato production and may play a role in early fruit maturity. Our results suggest that the heterologous Arabidopsis GRF9 gene can confer resistance to P deficiency in transgenic tomato plants and promote fruit production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app