Add like
Add dislike
Add to saved papers

Chemo-Enzymatic Synthesis of Poly(4-piperidine lactone- b-ω-pentadecalactone) Block Copolymers as Biomaterials with Antibacterial Properties.

Biomacromolecules 2018 July 10
With increasing troubles in bacterial contamination and antibiotic-resistance, new materials possessing both biocompatibility and antimicrobial efficacy are supposed to be developed for future biomedical application. Herein, we demonstrated a chemo-enzymatic ring opening polymerization (ROP) approach for block copolyester, that is, poly(4-benzyl formate piperidine lactone- b-ω-pentadecalactone) (PNPIL- b-PPDL), in a one-pot two-step process. Afterward, cationic poly(4-piperidine lactone- b-ω-pentadecalactone) (PPIL- b-PPDL) with pendent secondary amino groups was obtained via acidic hydrolysis of PNPIL- b-PPDL. The resulting cationic block copolyester exhibited high antibacterial activity against Gram negative E. coli and Gram positive S. aureus, while showed low toxicity toward NIH-3T3 cells. Moreover, the antibacterial property, cytotoxicity and degradation behavior could be tuned simply by variation of PPIL content. Therefore, we anticipate that such cationic block copolymers could potentially be applied as biomaterials for medicine or implants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app