Add like
Add dislike
Add to saved papers

Lentiviral infection of proliferating brain macrophages in HIV and simian immunodeficiency virus encephalitis despite sterile alpha motif and histidine-aspartate domain-containing protein 1 expression.

AIDS 2018 May 16
OBJECTIVE: HIV-1 infection of the brain and related cognitive impairment remain prevalent in HIV-1-infected individuals despite combination antiretroviral therapy. Sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) is a newly identified host restriction factor that blocks the replication of HIV-1 and other retroviruses in myeloid cells. Cell cycle-regulated phosphorylation at residue Thr592 and viral protein X (Vpx)-mediated degradation of SAMHD1 have been shown to bypass SAMHD1 restriction in vitro. Herein, we investigated expression and phosphorylation of SAMHD1 in vivo in relation to macrophage infection and proliferation during the neuropathogenesis of HIV-1 and simian immunodeficiency virus (SIV) encephalitis.

METHODS: Using brain and other tissues from uninfected and SIV-infected macaques with or without encephalitis, we performed immunohistochemistry, multilabel fluorescence microscopy and western blot to examine the expression, localization and phosphorylation of SAMHD1.

RESULTS: The number of SAMHD1 nuclei increased in encephalitic brains despite the presence of Vpx. Many of these cells were perivascular macrophages, although subsets of SAMHD1 microglia and endothelial cells were also observed. The SAMHD1 macrophages were shown to be both infected and proliferating. Moreover, the presence of cycling SAMHD1 brain macrophages was confirmed in the tissue of HIV-1-infected patients with encephalitis. Finally, western blot analysis of brain-protein extracts from SIV-infected macaques showed that SAMHD1 protein exists in the brain mainly as an inactive Thr592-phosphorylated form.

CONCLUSION: The ability of SAMHD1 to act as a restriction factor for SIV/HIV in the brain is likely bypassed in proliferating brain macrophages through the phosphorylation-mediated inactivation, not Vpx-mediated degradation of SAMHD1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app