Add like
Add dislike
Add to saved papers

Blood-brain barrier transport kinetics of NOTA-modified proteins: the somatropin case.

BACKGROUND: Chemical modifications such as PEG, polyamine and radio labeling on proteins can alter their pharmacokinetic behaviour and their blood-brain barrier (BBB) transport characteristics. NOTA, i.e. 1,4,7-triazacyclononane-1,4,7-triacetic acid, is a bifunctional chelating agent that has attracted the interest of the scientific community for its high complexation constant with metals like gallium. Until now, the comparative BBB transport characteristics of NOTA-modified proteins versus unmodified proteins are not yet described.

METHODS: Somatropin (i.e. recombinant human growth hormone), NOTA-conjugated somatropin and gallium-labelled NOTA-conjugated somatropin were investigated for their brain penetration characteristics (multiple time regression and capillary depletion) in an in vivo mice model to determine the blood-brain transfer properties.

RESULTS: The three compounds showed comparable initial brain influx, with Kin = 0.38 ± 0.14 μL/(g×min), 0.36 ± 0.16 μL/(g×min) and 0.28 ± 0.18 μL/(g×min), respectively. Capillary depletion indicated that more than 80% of the influxed compounds reached the brain parenchyma. All three compounds were in vivo stable in serum and brain during the time frame of the experiments.

CONCLUSIONS: Our results show that modification of NOTA as well as gallium chelation onto proteins, in casu somatropin, does not lead to a significantly changed pharmacokinetic profile at the blood-brain barrier.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app