Add like
Add dislike
Add to saved papers

Recombinant AroL-Catalyzed Phosphorylation for the Efficient Synthesis of Shikimic Acid 3-Phosphate.

Shikimic acid 3-phosphate, as a central metabolite of the shikimate pathway, is of high interest as enzyme substrate for 5-enolpyruvoyl-shikimate 3-phosphate synthase, a drug target in infectious diseases and a prime enzyme target for the herbicide glyphosate. As the important substrate shikimic acid 3-phosphate is only accessible via a chemical multi-step route, a new straightforward preparative one-step enzymatic phosphorylation of shikimate using a stable recombinant shikimate kinase has been developed for the selective phosphorylation of shikimate in the 3-position. Highly active shikimate kinase is produced by straightforward expression of a synthetic aroL gene in Escherichia coli. The time course of the shikimate kinase-catalyzed phosphorylation is investigated by 1 H- and 31 P-NMR, using the phosphoenolpyruvate/pyruvate kinase system for the regeneration of the ATP cofactor. This enables the development of a quantitative biocatalytic 3-phosphorylation of shikimic acid. After a standard workup procedure, a good yield of shikimic acid 3-phosphate, with high HPLC- and NMR purity, is obtained. This efficient biocatalytic synthesis of shikimic acid 3-phosphate is superior to any other method and has been successfully scaled up to multi-gram scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app