Add like
Add dislike
Add to saved papers

Deletion of Smad4 reduces hepatic inflammation and fibrogenesis during nonalcoholic steatohepatitis progression.

OBJECTIVE: To explore the effects of mothers against decapentaplegic homolog family member 4 (Smad4) deletion on inflammation and fibrogenesis in nonalcoholic steatohepatitis (NASH).

METHODS: Biopsied liver samples from NASH patients and normal liver tissue samples from patients who had received liver resection for trauma were collected. Smad4Co/Co and wild-type (WT) mice were used to construct the NASH model using a high-fat diet (HFD) or methionine- and choline-deficient diet (MCD). HE staining and TUNEL assay were used to observe the pathological changes and cell apoptosis, respectively. Quantitative real-time polymerase chain reaction was used to detect the expression of inflammatory, fibrogenesis and apoptosis-related genes, and immunohistochemistry to determine the protein expression of SMAD4, MCP-1 and α-SMA.

RESULTS: SMAD4 protein expression significantly increased in NASH patients than in the control group. Compared with WT mice, HFD- and MCD-fed Smad4Co/Co mice showed decreased hepatic steatosis, inflammation, liver cell apoptosis and nonalcoholic fatty liver activity score, reduced plasma glucose, triglyceride, free fatty acids, alanine aminotransferase and aspartate aminotransferase levels but increased adiponectin. Moreover, Smad4Co/Co decreased the expression of inflammatory markers (TNF-α, MCP-1, IFN-γ), fibrogenetic markers (COL1A1, α-SMA and TGF-β1), lipogenic (Srebp1c, Fas and Acc) and proapoptotic genes (Bax and caspase-3), but increased the expression of β-oxidation (Ppar-α, Cpt1 and Aco) and antiapoptotic genes (Bcl-2).

CONCLUSION: Smad4 deletion may inhibit lipogenesis, stimulate β-oxidation, improve lipid metabolism and liver function, alleviate inflammation and fibrosis, and reduce cell apoptosis in NASH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app