Add like
Add dislike
Add to saved papers

Stereochemistry-dependent structure of hydrogen-bonded protonated dimers: the case of 1-amino-2-indanol.

To understand the role of chirality in shaping biological supramolecular systems it is instructive to visualize the subtle effects of stereochemistry on the structure of model aggregates at the molecular level. Here, we apply conformer-specific IR-UV double-resonance laser spectroscopy in a cold ion trap to derive a detailed description of the protonated homodimers of (1R,2S)-cis- and (1R,2R)-trans-1-amino-2-indanol (c-AI2H+, t-AI2H+). Although the protonated monomers (c-AIH+, t-AIH+) only differ by the chirality of one carbon atom, their conformations are clearly distinct. c-AIH+ has an intramolecular NH+O hydrogen bond (H-bond), while t-AIH+ lacks such an interaction. This has crucial consequences on the geometry and stability of the corresponding c-AI2H+ and t-AI2H+ dimers. While there is a competition between intra- and intermolecular H-bonds in c-AI2H+, the formation of t-AI2H+ does not require deformation of the monomers. This difference results in higher binding energies of t-AI2H+ compared to c-AI2H+. To optimize the H-bond network, the two dimers do not necessarily involve the corresponding most stable monomers. c-AI2H+ and t-AI2H+ differ in their UV photodissociation mass spectra and in their electronic spectra, which suggests different geometries also in the excited state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app