Add like
Add dislike
Add to saved papers

Hybrid graphene-ceramic nanofibre network for spontaneous neural differentiation of stem cells.

Interface Focus 2018 June 7
A challenge in regenerative medicine is governed by the need to have control over the fate of stem cells that is regulated by the physical and chemical microenvironment in vitro and in vivo . The differentiation of the stem cells into specific lineages is commonly guided by use of specific culture media. For the first time, we demonstrate that human mesenchymal stem cells are capable of turning spontaneously towards neurogenic lineage when seeded on graphene-augmented, highly anisotropic ceramic nanofibres without special differentiation media, contrary to commonly thought requirement of 'soft' substrates for the same purpose. Furthermore, pro-inflammatory gene expression is simultaneously suppressed, and expression of factors promoting focal adhesion and monocytes taxis is upregulated. This opens new possibilities of using local topo-mechanical cues of the 'graphenized' scaffold surfaces to guide stem cell proliferation and differentiation, which can be used in studies of neurological diseases and cell therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app