Add like
Add dislike
Add to saved papers

Dynamics of sister chromatid resolution during cell cycle progression.

Faithful genome transmission in dividing cells requires that the two copies of each chromosome's DNA package into separate but physically linked sister chromatids. The linkage between sister chromatids is mediated by cohesin, yet where sister chromatids are linked and how they resolve during cell cycle progression has remained unclear. In this study, we investigated sister chromatid organization in live human cells using dCas9-mEGFP labeling of endogenous genomic loci. We detected substantial sister locus separation during G2 phase irrespective of the proximity to cohesin enrichment sites. Almost all sister loci separated within a few hours after their respective replication and then rapidly equilibrated their average distances within dynamic chromatin polymers. Our findings explain why the topology of sister chromatid resolution in G2 largely reflects the DNA replication program. Furthermore, these data suggest that cohesin enrichment sites are not persistent cohesive sites in human cells. Rather, cohesion might occur at variable genomic positions within the cell population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app