Add like
Add dislike
Add to saved papers

A novel association of campomelic dysplasia and hydrocephalus with an unbalanced chromosomal translocation upstream of SOX9 .

Campomelic dysplasia is a rare skeletal dysplasia characterized by Pierre Robin sequence, craniofacial dysmorphism, shortening and angulation of long bones, tracheobronchomalacia, and occasionally sex reversal. The disease is due to mutations in SOX9 or chromosomal rearrangements involving the long arm of Chromosome 17 harboring the SOX9 locus. SOX9, a transcription factor, is indispensible in establishing and maintaining neural stem cells in the central nervous system. We present a patient with angulation of long bones and external female genitalia on prenatal ultrasound who was subsequently found to harbor the chromosomal abnormality 46, XY, t(6;17) (p21.1;q24.3) on prenatal genetic testing. Comparative genomic hybridization revealed deletions at 6p21.1 and 17q24.3, the latter being 2.3 Mb upstream of SOX9 Whole-exome sequencing did not identify pathogenic variants in SOX9 , suggesting that the 17q24.3 deletion represents a translocation breakpoint farther upstream of SOX9 than previously identified. At 2 mo of age the patient developed progressive communicating ventriculomegaly and thinning of the cortical mantle without clinical signs of increased intracranial pressure. This case suggests ventriculomegaly in some cases represents not a primary impairment of cerebrospinal fluid dynamics, but an epiphenomenon driven by a genetic dysregulation of neural progenitor cell fate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app