JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The origin of GSKIP, a multifaceted regulatory factor in the mammalian Wnt pathway.

GSK3β interacting protein (GSKIP) is a naturally occurring negative regulator of GSK3β and retains both the Protein Kinase A Regulatory subunit binding (PKA-RII) domain and GSK3β interacting domain. Of these two domains, we found that PKA-RII is required for forming a working complex comprising PKA/GSKIP/GSK3β/Drp1 to influence phosphorylation of Drp1 Ser637. In this study, bioinformatics and experimental explorations re-analyzing GSKIP's biofunctions suggest that the evolutionarily conserved Domain of Unknown Function (DUF727) is an ancestral prototype of GSKIP in prokaryotes, and acquired the C-terminal GSK3β binding site (tail) in invertebrates except for Saccharomyces spp., after which the N-terminal PKA-RII binding region (head) evolved in vertebrates. These two regions mutually influence each other and modulate GSKIP binding to GSK3β in yeast two-hybrid assays and co-immunoprecipitation. Molecular modeling showed that mammalian GSKIP could form a dimer through the L130 residue (GSK3β binding site) rather than V41/L45 residues. In contrast, V41/L45P mutant facilitated a gain-of-function effect on GSKIP dimerization, further influencing binding behavior to GSK3β compared to GSKIP wild-type (wt). The V41/L45 residues are not only responsible for PKA RII binding that controls GSK3β activity, but also affect dimerization of GSKIP monomer, with net results of gain-of-function in GSKIP-GSK3β interaction. In addition to its reported role in modulating Drp1, Ser637 phosphorylation caused mitochondrial elongation; we postulated that GSKIP might be involved in the Wnt signaling pathway as a scavenger to recruit GSK3β away from the β-catenin destruction complex and as a competitor to compete for GSK3β binding, resulting in accumulation of S675 phosphorylated β-catenin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app