Add like
Add dislike
Add to saved papers

Distance-Dependent Sign Reversal in the Casimir-Lifshitz Torque.

The Casimir-Lifshitz torque between two biaxially polarizable anisotropic planar slabs is shown to exhibit a nontrivial sign reversal in its rotational sense. The critical distance a_{c} between the slabs that marks this reversal is characterized by the frequency ω_{c}∼c/2a_{c} at which the in-planar polarizabilities along the two principal axes are equal. The two materials seek to align their principal axes of polarizabilities in one direction below a_{c}, while above a_{c} their axes try to align rotated perpendicular relative to their previous minimum energy orientation. The sign reversal disappears in the nonretarded limit. Our perturbative result, derived for the case when the differences in the relative polarizabilities are small, matches excellently with the exact theory for uniaxial materials. We illustrate our results for black phosphorus and phosphorene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app