Add like
Add dislike
Add to saved papers

Double Gamow-Teller Transitions and its Relation to Neutrinoless ββ Decay.

We study the double Gamow-Teller (DGT) strength distribution of ^{48}Ca with state-of-the-art large-scale nuclear shell model calculations. Our analysis shows that the centroid energy of the DGT giant resonance depends mostly on the isovector pairing interaction, while the resonance width is more sensitive to isoscalar pairing. Pairing correlations are also key in neutrinoless ββ (0νββ) decay. We find a simple relation between the centroid energy of the ^{48}Ca DGT giant resonance and the 0νββ decay nuclear matrix element. More generally, we observe a very good linear correlation between the DGT transition to the ground state of the final nucleus and the 0νββ decay matrix element. The correlation, which originates on the dominant short-range character of both transitions, extends to heavier systems including several ββ emitters and also holds in energy-density functional results. Our findings suggest that DGT experiments can be a very valuable tool to obtain information on the value of 0νββ decay nuclear matrix elements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app