Add like
Add dislike
Add to saved papers

Positively Charged Hyperbranched Polymers with Tunable Fluorescence and Cell Imaging Application.

Fluorescence-tunable materials are becoming increasingly attractive because of their potential applications in optics, electronics, and biomedical technology. Herein, a multicolor molecular pixel system is realized using a simple copolymerization method. Bleeding of two complementary colors from blue and yellow fluorescence segments reproduced serious multicolor fluorescence materials. Interestingly, the emission colors of the polymers can be fine-tuned in the solid state, solution phase, and in hydrogel state. More importantly, the positive fluorescent polymers exhibited cell-membrane permeable ability and were found to accumulate on the cell nucleus, exhibiting remarkable selectivity to give bright fluorescence. The DNA/RNA selectivity experiments in vitro and in vivo verified that [tris(4-(pyridin-4-yl)phenyl)amine]-[1,8-dibromooctane] has prominent selectivity to DNA over RNA inside cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app