Add like
Add dislike
Add to saved papers

Recombinant interleukin-4 alleviates mechanical allodynia via injury-induced interleukin-4 receptor alpha in spinal microglia in a rat model of neuropathic pain.

Glia 2018 April 26
Glial cells play important roles in the development and maintenance of neuropathic pain. In particular, activated microglia in the spinal cord facilitate the hyper-excitability of dorsal horn neurons after peripheral nerve injury via pro-inflammatory molecules. In this study, we investigated the possible involvement of the anti-inflammatory cytokine, interleukin-4 (IL-4), in neuropathic pain. We did not detect the expression of IL-4 mRNA in the rat dorsal root ganglion or spinal cord; however, peripheral nerve injury induced the expression of IL-4 receptor (IL-4R) alpha mRNA in the spinal cord. A histological analysis revealed that nerve injury induced IL-4R alpha mRNA in activated spinal microglia ipsilateral to the injury site. Additionally, the increases in IL-4R alpha were coincident with the increased expression of phosphorylated signal transducer and activator of transcription 6 (pSTAT6) in spinal microglia. Intrathecal administration of recombinant IL-4 suppressed mechanical hypersensitivity in neuropathic rats, and the analgesic effect of IL-4 was accompanied by further enhancement of pSTAT6 expression in spinal microglia. Taken together, these results suggest that the adaptive responses of microglia to nerve injury involve both inflammatory and anti-inflammatory signaling, including IL-4R alpha and pSTAT6. These findings support that utilizing the endogenous anti-nociceptive activity of IL-4R alpha may modify the cell lineage of pro-nociceptive microglia, thus providing a novel therapeutic strategy for neuropathic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app