Add like
Add dislike
Add to saved papers

Acceleration of carboxylesterase-mediated activation of irinotecan to SN-38 by serum from patients with end-stage kidney disease.

PURPOSE: Pharmacokinetics and pharmacodynamics of irinotecan have been reported to be altered in cancer patients with end-stage kidney disease (ESKD). Carboxylesterase (CES) has an important role in metabolism of irinotecan to its active metabolite, SN-38, in human liver. The purpose of the present study was to investigate whether CES activity was altered in ESKD patients.

METHODS: The present study investigated the effects of uremic serum, uremic toxins, and fatty acids on the hydrolysis of irinotecan and a typical CES substrate, p-nitrophenyl acetate (PNPA), in human liver microsomes. Normal and uremic serum samples were deproteinized by treatment with methanol were used in the present study.

RESULTS: The present study showed that both normal and uremic serum significantly inhibited CES-mediated metabolism of both irinotecan and PNPA. The inhibition by uremic serum was weaker than that by normal serum, suggesting that CES activity may be higher in ESKD patients. Although four uremic toxins did not affect PNPA metabolism, arachidonic acid inhibited it. There was no difference in inhibitory effect of PNPA metabolism between both mixtures of seven fatty acids used at concentrations equivalent to those present in 10% normal or uremic serum. Interestingly, those mixtures had a more pronounced effect than either 10% normal or uremic serum.

CONCLUSIONS: The present study showed that the inhibition of CES activity by uremic serum was weaker than that by normal serum, suggesting that an increase in maximum plasma concentration of SN-38 in cancer patients with ESKD can be attributed to an accelerated CES-mediated irinotecan hydrolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app