Add like
Add dislike
Add to saved papers

Downregulation of Lgr6 inhibits proliferation and invasion and increases apoptosis in human colorectal cancer.

The aim of the present study was to analyze the role of leucine‑rich repeat‑containing G‑protein coupled receptor 6 (Lgr6) in the proliferation and invasion of colorectal cancer (CRC) cells, and to investigate its possible mechanisms. The expression of Lgr6 in CRC tissues was observed by real time‑quantitative polymerase chain reaction and western blotting. Then cell viability, apoptosis and cell invasion was measured by MTT, flow cytometry or Matrigel‑Transwell system, respectively in CRC cells after transfected with Lgr6 siRNA or Lgr6 vector. Furthermore, the expression of apoptosis‑associated protein and PI3K/AKT signaling (phosphorylated‑PI3K, phosphorylated‑AKT, t‑PI3K, t‑AKT) were measured by real‑time PCR/or western blot analysis. The results demonstrated that the level of Lgr6 was higher in CRC tissues than that in adjacent tissues, and Lgr6 overexpression increased CRC proliferation, and invasion of CRC cells in vitro. Notably, suppressing the expression of Lgr6 in CRC cells increased the expression of B‑cell lymphoma-2 (Bcl‑2)‑associated X protein and caspase‑3, but decreased the expression of Bcl‑2 at the mRNA and protein levels. Lgr6 also had the ability to regulate the phosphoinositide 3‑kinase/AKT signaling pathway. It was concluded that Lgr6 has a tumor‑promoting role in the development of CRC, and may serve as a potential diagnostic and prognostic biomarker for the disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app