Add like
Add dislike
Add to saved papers

MicroRNA‑125 inhibits RKO colorectal cancer cell growth by targeting VEGF.

Colorectal cancer (CRC) is one of the major types of cancer and causes of mortality worldwide, and it remains the third most common cause of cancer‑associated mortality worldwide. MicroRNAs (miRNAs) are a class of small RNAs, which have been shown to be associated with CRC. In the present study, an MTT assay and proliferating cell nuclear antigen (PCNA) protein examination assay were performed to detect RKO cell viability. Hoechst staining, and caspase‑3 activity and BrdU incorporation assays were performed to detect RKO cell apoptosis, respectively. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analyses were used to analyze the expression of cyclooxygenase‑2 (COX‑2). Western blot analysis was also used to analyze the expression of vascular endothelial growth factor (VEGF) and mitogen‑activated protein kinase (MAPK) signal molecules, including extracellular signal‑regulated kinase (ERK), p38 and c‑Jun N‑terminal kinase (JNK). The target genes of miR-125 were predicted using a double luciferase reporter gene assay. The results of the MTT assay showed that RKO cell viability was decreased by an miRNA-125 mimic and increased by the miRNA-125 inhibitor. The RKO cell viability was significantly correlated with the expression of PCNA. The migration of RKO cells was significantly downregulated in the miR-125 mimics‑transfected cells and upregulated in the miRNA-125 inhibitor‑transfected cells. The results of Hoechst staining and the caspase‑3 activity and BrdU incorporation assays showed that RKO cell apoptosis was increased following miRNA-125 mimic transfection and decreased following miRNA-125 inhibitor transfection. The results of the RT‑qPCR and western blot analysis showed that the expression of COX‑2 was increased in the miR-125 mimic‑transfected cells and decreased in the miR-125 inhibitor‑transfected cells. Using an online miRNA target prediction database, the double luciferase reporter gene assay showed that miR‑125 targeted and inhibited the expression of VEGF through target sites located in the 3' untranslated region of VEGF mRNA. In conclusion, the abnormal expression of miR‑125 was found to be closely associated with CRC. Therefore, miR‑125 may be a novel therapeutic target for CRC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app