Add like
Add dislike
Add to saved papers

Constructing Redox-Responsive Metal-Organic Framework Nanocarriers for Anticancer Drug Delivery.

Metal-organic frameworks (MOFs), which are a unique class of hybrid porous materials built from metal ions and organic ligands, have attracted significant interest in recent years as a promising platform for controlled drug delivery. Current approaches for creating MOFs-based responsive drug carriers involve encapsulation of stimuli-responsive compositions into MOFs or postsynthetic surface modification with sensitive molecules. In this study, we developed a novel intrinsic redox-responsive MOFs carrier, MOF-M(DTBA) (M = Fe, Al or Zr) by using iron, aluminum, or zirconium as metal nodes and 4,4'-dithiobisbenzoic acid (4,4'-DTBA) as the organic ligand. The disulfide bond in 4,4'-DTBA is cleavable by glutathione (GSH), which is often overexpressed in tumor cells. It was found that MOF-Zr(DTBA) synthesized at 40 °C displayed the appropriate size and properties as a drug carrier. By incorporating curcumin (CCM) into MOF-Zr(DTBA), CCM@MOF-Zr(DTBA) nanoparticles were obtained that displayed a faster releasing behavior in vitro and enhanced the cell death compared with free CCM. The in vivo anticancer experiments indicate that CCM@ MOF-Zr(DTBA) exhibits much higher antitumor efficacy than free CCM. This strategy for constructing responsive MOFs-based nanocarriers might open new possibilities for the application of MOFs in drug delivery, molecular imaging, or theranostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app