Add like
Add dislike
Add to saved papers

pH-Responsive Zwitterionic Copolymer DHA-PBLG-PCB for Targeted Drug Delivery: A Computer Simulation Study.

In this work, the self-assembled behaviors of zwitterionic copolymer docosahexaenoic acid- b-poly(γ-benzyl-l-glutamate)- b-poly(carboxybetaine methacrylate) (DHA-PBLG-PCB) and the loading and release mechanism of the anticancer drug doxorubicin (DOX) was investigated via computer simulations. The effects of polymer concentration, drug content, and pH on polymeric micelles were explored by dissipative particle dynamics (DPD) simulations. Simulation results show that DHA-PBLG15 -PCB10 can self-assemble into core-shell micelles; in addition, the drug-loaded micelles have a pH-responsive feature. DOX can be encapsulated into the core-shell micelle under normal physiological pH conditions, whereas it can be released under acidic pH conditions. The self-assembled behaviors of copolymer DHA-PBLG-PEG were also studied to have a comparison with those of DHA-PBLG-PCB. The DHA-PBLG15 -PCB10 system has a stable structure and it has a great potential to serve as drug delivery vehicles for targeted drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app