Add like
Add dislike
Add to saved papers

[Effects of warming and precipitation exclusion on soil N2O fluxes in subtropical forests.]

In order to explore how soil warming and precipitation exclusion influence soil N2O fluxes, we used related functional genes as markers, and four treatments were set up, i.e. , control (CT), soil warming (W, 5 ℃ above the ambient temperature of the control), 50% precipitation reduction (P), soil warming plus 50% precipitation reduction (WP). The results showed that precipitation exclusion reduced soil ammonium nitrogen concentration significantly. Soil warming decreased soil N2O flux and soil denitrification potential significantly. Soil microbial biomass nitrogen (MBN) in warming treatment (W) and precipitation exclusion treatment (P) was significantly lower than that in the control. The amoA gene abundance of AOA was negatively correlated with MBN and ammonium nitrogen contents, but neither soil nitrification potential nor soil N2O flux was correlated with the amoA gene abundance of AOA. Path analysis showed that the denitrification potential affected soil N2O flux directly, while microbial biomass phosphorus (MBP) and warming affected soil N2O flux indirectly through their direct effects on denitrification potential. Temperature might be the main driver of N2O flux in subtropical forest soils. Global warming would reduce N2O emissions from subtropical forest soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app