Add like
Add dislike
Add to saved papers

[The relative contributions of plant quality, simulated rising temperature, and habitat to litter decomposition.]

With litter bag methods, we examined mass loss rates and different chemical fractions of litters from two wetland plant species, Zizania caduciflora and Hippuris vulgaris. Those two species examined here varied significantly in their initial litter chemical traits. Experiment was performed under simulated rising temperature (1.5-2.0 ℃), and under three different habitats (air, air-water interface and water-soil interface). The results showed that, during one-year decomposition period, the mass resi-dual rates exhibited distinct seasonal dynamics, and there were strong interactive effects between seasonal dynamics and environmental factors. Different factors contributed differently for the variation of litter decomposition, 28.8% of which being explained by litter quality, 6.3% of which being explained by rising temperature, and 34.9% being explained by habitat. Along with the decomposition, the contents of different chemical fractions (easy or hard to decompose) varied greatly. Among them, nitrogen contents in H. vulgaris decreased by 53.1%, while the lignin contents increased by 45.4%. Overall, habitat was the most important factor driving litter decomposition, the second was litter quality, and rising temperature had minor effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app