Add like
Add dislike
Add to saved papers

[Effects of p-hydroxybenzoic acid and phloroglucinol on mitochondria function and root growth in cotton (Gossypium hirsutum L.) seedling roots.]

With early-maturing cotton cultivar CCRI-50 widely grown in China as experimental material, water culture experiment was conducted to study the effects of p-hydroxybenzoic acid and phloroglucinol with different concentrations (0.8, 4.0, and 20.0 mmol·L-1 ) on generation rate of reactive oxygen, changes of antioxidant enzyme activities and mitochondria function of cotton roots. Results showed that p-hydroxybenzoic acid and phloroglucinol treatments inhibited the cotton root growth, reduced SOD, POD, CAT and H+ -ATPase activities in root mitochondria, increased the generation rate of O2- · and H2 O2 content. In addition, they also increased the opening of mitochondrial permeability transition pores (MPTP), decreased the membrane fluidity and cytochrome c/a (Cyt c/a). Difference of mitochondria function between p-hydroxybenzoic acid and phloroglucinol treatments was minor at concentration of 0.8 mmol·L-1 , while the inhibition to root growth and mitochondria function under treatment of p-hydroxybenzoic acid at concentration of 4.0 and 20.0 mmol·L-1 was stronger than that of phloroglucinol. Above all, p-hydroxybenzoic acid and phloroglucinol inhibited antioxidant enzyme activity and mitochondrial function in cotton seedling roots, and the inhibition depended on dose of phenolic acids. The inhibition to root growth and mitochondria function between p-hydroxybenzoic acid and phloroglucinol treatment was different, and p-hydroxybenzoic acid had stronger inhibition than phloroglucinol at the concentration more than 4.0 mmol·L-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app