Add like
Add dislike
Add to saved papers

Novel nanobiocomposite hydrogels based on sage seed gum-laponite: Physico-chemical and rheological characterization.

In this study, the physico-chemical and rheo-mechanical properties of sage seed gum hydrogel, reinforced by various ratios (0-25 wt.%) of Laponite, were investigated. Particles size measurements indicated the formation of large SSG-Laponite microstructures upon nanoparticle adding, due to the interactions generated between the anionic SSG and the charged surfaces of clay platelets. Laponite affected the surface tension and density of the SSG-based systems significantly, but only influenced the ζ-potential above 20 wt.%. The dynamic rheological behavior of SSG-based nanocomposites reflected the reinforcing effect of secondary structures and percolated three-dimensional network, suggested a structural modification of the hydrogels with the Laponite loading. An improvement in texture profile analysis parameters was observed in Laponite content ≤5 wt.%, whereas for nanoparticles >5 wt.%, a significant decrease was obtained. In conclusion, Laponite improved the rheological and physico-chemical properties of SSG-based hydrogel and extended its potential as promising future bio-products for industrial applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app