Add like
Add dislike
Add to saved papers

Protective Effects of Ginsenoside Rb1 against Blood-Brain Barrier Damage Induced by Human Immunodeficiency Virus-1 Tat Protein and Methamphetamine in Sprague-Dawley Rats.

Although antiretroviral therapy has helped to improve the lives of individuals infected with human immunodeficiency virus 1 (HIV-1), these patients are often still afflicted with HIV-1-associated neurocognitive disorders, which can lead to neurocognitive impairment and even dementia, and continue to hamper their quality of life. Methamphetamine abuse in HIV-1 patients poses a potential risk for HIV-associated neurocognitive disorders, because methamphetamine and HIV-1 proteins such as transactivator of transcription can synergistically damage the blood-brain barrier (BBB). In this study, we aimed to examine the effects of methamphetamine and HIV-1 Tat protein on the blood-brain barrier function and to determine whether ginsenoside Rb1 (GsRb1) plays a role in protecting the BBB. Sprague-Dawley rats were divided into four groups. The experimental groups received methamphetamine and HIV-1 Tat protein or both and the control group received saline or GsRb1 pretreatment. Oxidative stress-related factors, tight junction (TJ) proteins, blood-brain barrier permeability, and morphological changes were recorded in each group. The results showed that the group treated with Methamphetamine[Formula: see text]Tat showed a significant change at the ultrastructural level and in the levels of oxidative stress-related factors, TJ proteins, and BBB permeability, suggesting that the BBB function was severely damaged by HIV-1 Tat and methamphetamine synergistically. However, malondialdehyde levels and BBB permeability were lower and the oxidative stress-related factors superoxide dismutase and glutathione were higher in the GsRb1-treated group than in the Methamphetamine[Formula: see text]Tat-treated group, indicating that GsRb1 can protect the BBB against the toxic effects of HIV-1 Tat and methamphetamine. These results show that GsRb1 may offer a potential therapeutic option for patients with HIV-associated neurocognitive disorders or other neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app