Add like
Add dislike
Add to saved papers

Saliency of Vowel Features in Neural Responses of Cochlear Implant Users.

Cochlear implants restore hearing in deaf individuals, but speech perception remains challenging. Poor discrimination of spectral components is thought to account for limitations of speech recognition in cochlear implant users. We investigated how combined variations of spectral components along two orthogonal dimensions can maximize neural discrimination between two vowels, as measured by mismatch negativity. Adult cochlear implant users and matched normal-hearing listeners underwent electroencephalographic event-related potentials recordings in an optimum-1 oddball paradigm. A standard /a/ vowel was delivered in an acoustic free field along with stimuli having a deviant fundamental frequency (+3 and +6 semitones), a deviant first formant making it a /i/ vowel or combined deviant fundamental frequency and first formant (+3 and +6 semitones /i/ vowels). Speech recognition was assessed with a word repetition task. An analysis of variance between both amplitude and latency of mismatch negativity elicited by each deviant vowel was performed. The strength of correlations between these parameters of mismatch negativity and speech recognition as well as participants' age was assessed. Amplitude of mismatch negativity was weaker in cochlear implant users but was maximized by variations of vowels' first formant. Latency of mismatch negativity was later in cochlear implant users and was particularly extended by variations of the fundamental frequency. Speech recognition correlated with parameters of mismatch negativity elicited by the specific variation of the first formant. This nonlinear effect of acoustic parameters on neural discrimination of vowels has implications for implant processor programming and aural rehabilitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app