Add like
Add dislike
Add to saved papers

A Refined Crop Drought Monitoring Method Based on the Chinese GF-1 Wide Field View Data.

Sensors 2018 April 24
In this study, modified perpendicular drought index (MPDI) models based on the red-near infrared spectral space are established for the first time through the analysis of the spectral characteristics of GF-1 wide field view (WFV) data, with a high spatial resolution of 16 m and the highest frequency as high as once every 4 days. GF-1 data was from the Chinese-made, new-generation high-resolution GF-1 remote sensing satellites. Soil-type spatial data are introduced for simulating soil lines in different soil types for reducing errors of using same soil line. Multiple vegetation indices are employed to analyze the response to the MPDI models. Relative soil moisture content (RSMC) and precipitation data acquired at selected stations are used to optimize the drought models, and the best one is the Two-band enhanced vegetation index (EVI2)-based MPDI model. The crop area that was statistically significantly affected by drought from a local governmental department, and used for validation. High correlations and small differences in drought-affected crop area was detected between the field observation data from the local governmental department and the EVI2-based MPDI results. The percentage of bias is between −21.8% and 14.7% in five sub-areas, with an accuracy above 95% when evaluating the performance via the data for the whole study region. Generally the proposed EVI2-based MPDI for GF-1 WFV data has great potential for reliably monitoring crop drought at a relatively high frequency and spatial scale. Currently there is almost no drought model based on GF-1 data, a full exploitation of the advantages of GF-1 satellite data and further improvement of the capacity to observe ground surface objects can provide high temporal and spatial resolution data source for refined monitoring of crop droughts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app