Add like
Add dislike
Add to saved papers

Microstructure and Tensile Properties of Friction Stir Processed Mg⁻Sn⁻Zn Alloy.

Materials 2018 April 24
In this study, as-cast Mg⁻6Sn⁻2Zn (wt.%) alloy was subjected to friction stir processing (FSP) and the microstructure and tensile properties of FSP Mg⁻6Sn⁻2Zn samples were investigated. It was found that, in the stir zone (SZ) of FSP Mg⁻6Sn⁻2Zn samples, α-Mg grains were significantly refined via dynamic recrystallization (DRX) and the Mg₂Sn phase was broken and partially dissolved. The microstructure in SZ was nonuniform and DRXed grains in the SZ-up regions were coarser than those in the SZ-down regions. Coarse broken Mg₂Sn particles were observed in the SZ-up regions, while only fine Mg₂Sn particles were observed in the SZ-down regions. Strong {0001} basal texture developed in the SZ regions of Mg⁻6Sn⁻2Zn samples after FSP. The increase of travel speed had little effect on the texture of different SZ regions. The ductility of FSP Mg⁻6Sn⁻2Zn samples was obviously improved, while the improvement in strength was negligible when compared to the as-cast sample. The tensile properties of FSP Mg⁻6Sn⁻2Zn samples were influenced by grain refinement, texture modification, and the breaking up and dissolution of the Mg₂Sn phase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app